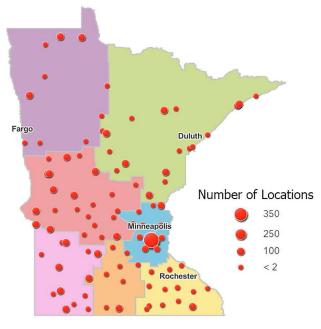
Strategies for Source and Load Reduction in Industrial Effluent

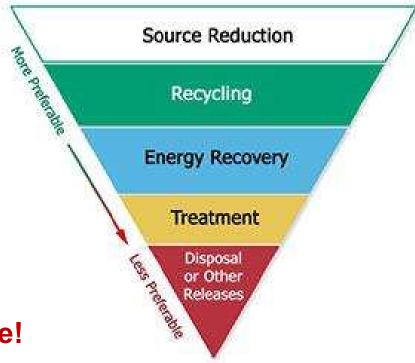
Kevin Philpy
Senior Engineer
Minnesota Technical Assistance Program (MnTAP)

How did I get here?

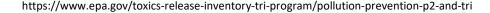

- Civil/Environmental background
 - 10+ years in consulting due diligence, compliance, ELV
 - 6 years in corporate EHS at DFA
 - Joined MnTAP in 2022
- Food systems water, waste, energy, chemical reduction
- TA/assessments in the field
- Reporting/industry outreach

Minnesota Technical Assistance Program

- Confidential, grant-funded environmental support for MN businesses
 - Prevent pollution at the source
 - Optimize resource consumption
 - Reduce waste and energy use
- 11 engineers and professionals
- Based in School of Public Health at University of Minnesota



Supported Facilities 2017-2021



Pollution Prevention (P2)

- Divert or limit high-strength waste from <u>wastewater</u>
- Minimize or reuse <u>water</u>
- Minimize the need for <u>chemicals</u> (which can be expensive!)

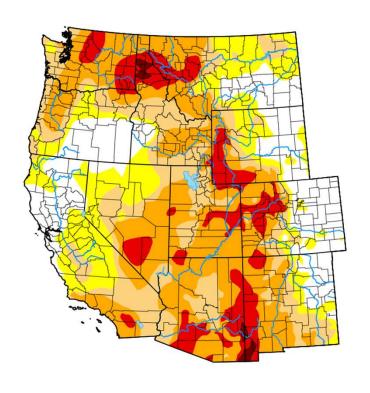
Source reduction benefits everyone!

High-Strength Waste Sources

• Facility-Specific

- Equipment sanitization Most facilities
- Building heating/cooling Any facility
- Floor cleaning/janitorial Any facility

Industry-Specific


- Food/beverage COD/BOD, TSS
- Metal finishers high pH, inorganics
- Wood/paper treatment COD, TSS, inorganics
- All facilities High water and chemical use

Water Conservation

Map released: Thurs. October 9, 2025

Data valid: October 7, 2025 at 8 a.m. EDT

Intensity

None

D0 (Abnormally Dry)

D1 (Moderate Drought)

D2 (Severe Drought)

D3 (Extreme Drought)

D4 (Exceptional Drought)

No Data

Authors

United States and Puerto Rico Author(s):

Curtis Riganti, National Drought Mitigation Center

Pacific Islands and Virgin Islands Author(s):

Tsegaye Tadesse, National Drought Mitigation Center

U.S. Drought Monitor – Nebraska-Lincoln

Common Wastewater Challenges

- Irregularity in discharge
 - Daily production/cleaning variability
 - Seasonal production
- New contaminants/products/processes
 - Changing reagent/sanitizer costs
 - Generator/SIU employee turnover

Keep slug plans and product lists updated!

Common Wastewater Goals

- Obey relevant ordinances and permits
- Minimize costs of treatment
- Be a good neighbor
- Protect surrounding resources

Leveraging the regulations (POTW) or SOPs (SIUs) you have is the best way to ensure compliance.

MnTAP Intern Program

•15-20 P2 Intern Projects

- Process efficiency/lean manufacturing
- Waste prevention
- Water & energy conservation

•Full-time paid position

- •~13 weeks end of May to mid-August
- •\$19/hr + \$1,500 stipend upon completion

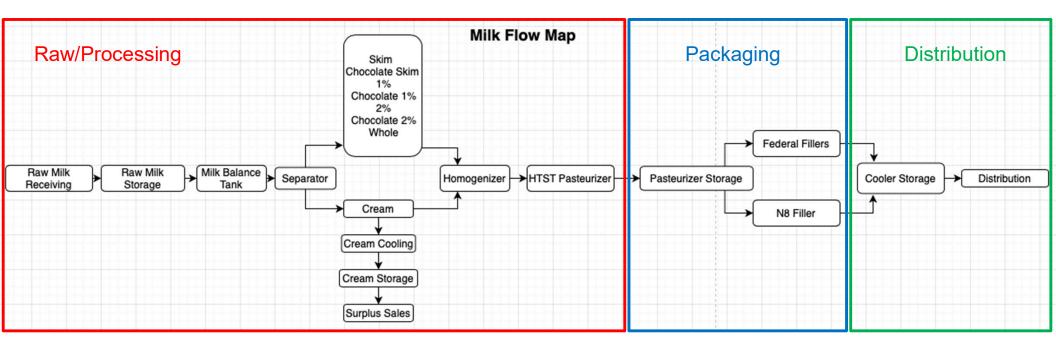
Primary project team

- •MnTAP Intern project lead
- •1 supervisor on-site at the company
- •1 supervisor with MnTAP

The 2025 MnTAP Intern Cohort

Site Assessment Guidance

- Watch the process. Make observations and non-invasive measurements.
 - Load = Flow x strength
 - Load may come from multiple sources
- Establish and maintain positive relationships
 - Governmental Local → State → Federal regulations
 - Industrial with and between WW generators
- Ensure replicable data/information
 - Systematic the same way, every time
 - Defensible consistent with industry or legal standards



2023 Dairy Internships

Dairy Processing

Dairy Product Conservation

- Reduce product lost to wastewater
 - Average Shrink of 2%
 - Shrink: 100 jugs made, 98 jugs make it to distribution
- Evaluate key processes for milk loss
- Decrease strength charges resulting from milk loss to drain

Federal Fillers

Rotary filler for half and full gallon jugs

Start Up:

- Milk is run through to rinse out sanitizer
- Milk flow is shut off manually once sanitizer is removed

Shut Down:

- At end of run, remaining milk is discharged to floor drain
- Bowl and lines are rinsed before cleaning

Recommendations for Federal Fillers

Proposed Solution for Start Up

- Implement an inline conductivity sensor before bowl of filler
- Eliminates operator variability in shutoff time
- Cost: TBD

Potential Annual Savings

- 94,000 gallons of milk
- \$114,000 in revenue
- \$38,000 in strength charges

Recommendations for Federal Fillers

Proposed Solution for Shut Down

- Best practice sharing between operators
- Reduce milk left in bowl before filler is shut down
- Cost: \$1,000

Potential Annual Savings

- 29,000 gallons of milk
- \$35,000 in revenue
- \$11,700 in strength charges

CIP (Clean-in-Place) Systems

- CIP systems clean tanks/product lines
- May include:
 - Pre-rinse
 - Intermediate-rinse
 - Post-rinse
 - Caustic/acid wash
 - Sanitize
- Remove product, scale and biofouling
- Each system is responsible for multiple tanks/lines called circuits
- Trended system data

Decrease Post/Intermediate-Rinse Time

Water Savings

- Utilized trended data
- Monitored the conductivity to find when it reached a low point for each circuit
- Added a safety net of 20 seconds to the new rinse time

Fuel Savings

- Due to lower water usage, fuel was also saved
- Only applied to some circuits

Decrease Pre-Rinse Time

Water Savings

- Trended data was utilized
- There was no turbidity sensor present
- Used post/intermediate-rinse time for new pre-rinse time
- Safety net of 20 seconds utilized

Fuel Savings

 Same as post/intermediaterinse

Natural gas boiler

10 Ton Natural Gas Fired Steam Boiler (aac-autoclave.com)

Condensate Recovery

- Food production is a wet process
- Not all water comes into contact with product
- Condensate can be recovered

Solutions

- Save final rinsate for pre-rinse
- Close the loop on cooling water

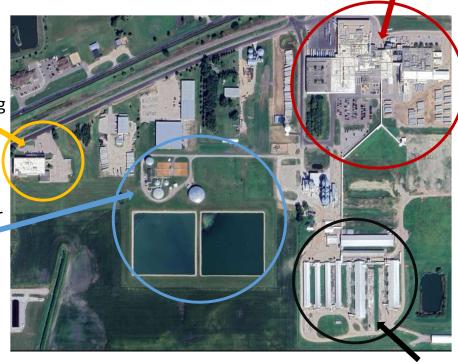
2025 Internship

- Gaylord, MN
- 600 employees
- 320,000 square feet
- Produces liquid and cooked egg for foodservice and food manufacturing

MMD1

Provide background information on your company/facility on this slide, such as:

City, Size (sq footage or # of employees). Also touch on what their products and services are and include the company logo. Matthew M Domski, 2023-07-27T23:16:42.900


Incentives to Change MMD1

Wastewater Loading Reduction

- Prepare for 2nd processing plant
- Reduce phosphorus load, CBOD, TSS, and pH
- Prevent egg, chemical, and water loss

New **Processing** Plant

Wastewater **Treatment** Plant

Current Processing Plant

Slide 22

MMD1

List why the company is interested in the focus of your project (why they sought to partner with MnTAP). Examples of this could be: corporate/local facility goals and targets, high utility, wastewater and/or hauling costs, process efficiency and safety improvements.

Matthew M Domski, 2023-07-27T23:19:21.152

Overview of Departments

Breaking

- Receives eggs from chicken barns
- Cleans, cracks, filters, and presses eggs
- Eggs used in processing & packaging

<u>Precook</u>

 Cooks, freezes, and packages egg patties

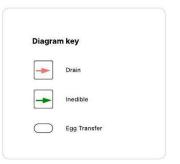
Aseptic

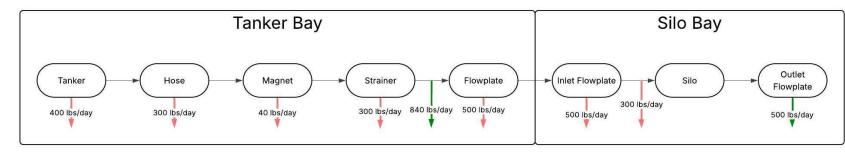
- Processes liquid egg
 - Pasteurization
 - Homogenization
- Products: Egg cartons & bags

System C

- Processes liquid egg
 - Pasteurization
 - Homogenization
- Product: Egg cartons

Sources of Egg Loss




Tanker Bay

- 24-32 tankers daily
- 1,100,000 lbs of liquid daily

Silo Bay

 Hold whole egg, egg yolk, egg whites, mixes, and cage-free versions

Slide 24

MMD1

Replace the title with one of your primary recommendations that you want to showcase at the Symposium. You can use more than 1 slide to describe this recommendation and how you investigated solutions, but remember our time limit of 10 minutes.

Matthew M Domski, 2023-07-27T21:30:43.958

Raw Receiving Recommendations

Install Troughs & Train Operators

- Cost
 - Troughs & Hoses: \$3,300
 - Training: \$130
- Annual Waste Reduction
 - 98,000 lbs of egg
 - 1,030 lbs of phosphorus
 - 5,400 lbs of ferric chloride
- Annual Savings
 - Pretreatment savings: \$70,000
 - Inedible revenue: \$23,000

Chemical Use at Facility

COP Tanks

- Cleans removable parts
- Circulation & Soaking:
 - Sodium hydroxide
- For scrubbing:
 - Trisodium phosphate

Egg Disinfection

- Sprays shelled eggs
- For fecal matter removal:
 - Sodium hypochlorite

Chemical Use Reduction Recommendations

Add Infographics and Pitchers for Accurate Chemical Addition

• Cost

• Pitchers: \$400

• Jugs: \$1,000

• Retraining: \$260

- Annual Waste Reduction
 - 3,400 lbs of sodium hydroxide
- Annual Savings
 - \$4,100

LOCATION: ASEPTIC-SCHOLLE

AMOUNT OF WATER / CANTIDAD DE AGUA / QADARKA BIYAH

135 gallons

AMOUNT OF NAOH / CANTIDAD DE NAOH / QADARKA NAOH

5 quarts

Chemical Use Reduction Recommendations

Plug Excess Spray Nozzles

Cost

• Plugs: \$14

- Annual Waste Reduction
 - 330,000 gallons of water
 - 2,200 lbs of sodium hypochlorite
- Annual Savings
 - \$8,600

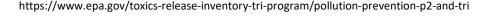
MMD1

Recommendation	Annual reduction	Total cost	Annual savings	Payback period	Status
Install Troughs and Train Operators	98,000 lbs of liquid egg 1,030 lbs of phosphorus 5,400 lbs of ferric chloride	\$3,400	\$93,000	13 days	Implementing
Reduce CIP Prerinse Time	1.4 million gallons of water	\$25	\$3,500	3 days	Recommended
Re-Install Solenoid and Flow Controls for Pumps	440,000 gal of water	\$500	\$1,100	5 months	Implementing
Install Automated Flow Control for Pumps	450,000 gal of water	\$570	\$1,100	6 months	Implementing
Reduce Number of Spray Nozzles in Breaking	330,000 gal of water 2,200 lbs of sodium hypochlorite	\$14	\$8,600	Immediate	Implementing
Reduce COP Tanks Chemical Usage	3,400 lbs of sodium hydroxide	\$3,600	\$4,100	10 months	Implementing

Slide 29


MMD1

List all of your recommendations in this table, keeping it in this color scheme/format. Depending on how much time you have left, you can briefly go over additional recommendations in this table (for each, target 2-3 sentence description or maybe 15-20 seconds).


Matthew M Domski, 2023-07-27T20:27:35.096

Source Reduction is the Goal!

- Divert or limit high-strength waste from wastewater
- Minimize or reuse <u>water</u>
- Minimize the need for <u>chemicals</u> (which can be expensive!)

Source reduction benefits everyone!

Thank You!

Strengthening Minnesota businesses by improving efficiency while saving money through energy, water, and waste prevention

www.mntap.umn.edu

Kevin Philpy

philp029@umn.edu

