

Case Study – Gresham's FOG Program From FSEs to Renewable Energy

Overview

HISTORICAL BACKGROUND

- Gresham WWTP's Renewable Energy Past
- The Road to the FOG Receiving Station and Cogeneration Improvements

CO-DIGESTION OF FOG

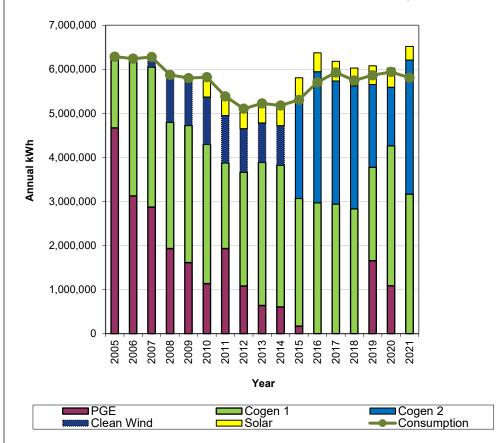
- Current Operation of Gresham's Digesters
- Current Status of the WWTP's FOG Program

FOG SCREENING IMPROVEMENTS CIP

• FOG Screenings Improvements

FUTURE OF FOG IN GRESHAM

Anaerobic Digestion and Cogeneration Expansion



History of Sustainability at Gresham WWTP

Renewable Energy

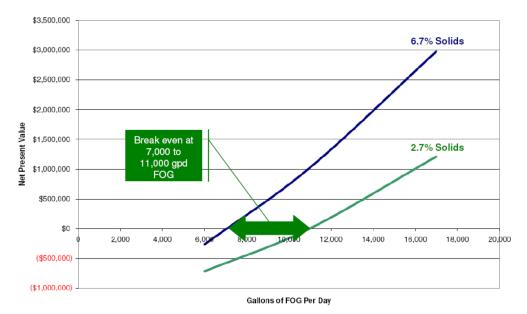
- Waukesha 250kW CHP Engine online in 1991.
 - Produced an average 3,040kWh/day
- Cogen Replacement in 2005 with CAT 3508 400kW Engine
 - Produces ~50% of annual power consumption with fullyear runtimes
- Purchased Clean Wind from 2007 to 2014
 - Purchased 17-20% of annual power consumption in respective years
- Solar Power Purchase Agreement in 2010
 - Produces between 5-9% annual power consumption

Figure 1 2005-2021 Consumption/Production Summary

History of Sustainability at Gresham WWTP

Drivers: Evaluation/Implementation of FOG Co-Digestion

- Success of co-gen 1 providing ~50% annual power consumption
 - Second co-gen would provide path to electrical netzero by doubling power production.
 - Each cogen needs 140,000 SCFD Biogas, with 180,000 SCFD typical production, Pre-FOG
 - Need 280,000 SCFD
- 2008 City Council Sustainability Policy
 - 80% GHG reduction by 2050
 - 100% renewable energy by 2030
- Partnership with Oregon Business
 Development Department
 - Grant funding for the City of Gresham's FOG Feasibility Study in 2009
 - Feasibility Study of Digester Grease/Food Waste Injection System Wastewater Treatment Plant Process Improvements Pre-Design prepared by CH2M-Hill.



History of Sustainability at Gresham WWTP

FOG Feasibility Study

- Study Findings
 - 2nd co-gen is economically viable if:
 - 7,000 to 11,000 gallons of FOG codigested per day &
 - tipping fees >\$0.03/gallon
 - TS between 2.7%-6.7%
 - Simple payback estimate of 7 years based on:
 - avoided power costs,
 - Business Energy Tax Credit (BETC), and
 - Energy Trust incentive payments

Break Even Anaylysis For 6.7% and 2.7% Solids, BETC, Green Tags, and Tipping Fee of \$0.03/Gallon

FOG System Development

FOG Phase 1

- 12,000 gallon tank
- Pumping, heating, and odor control provisions

FOG Phase 2

- Phase 2A
 - FOG Station Expansion
- Phase 2B
 - Cogeneration Expansion

Additional Drivers

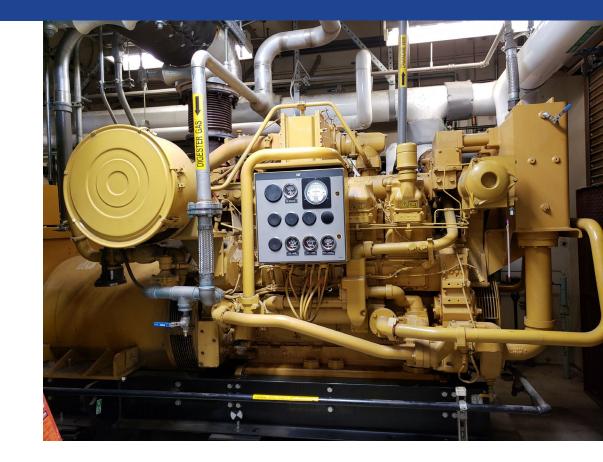
- Grants/Tax Credits
 - Energy Trust of Oregon (ETO)
 - \$40,000 for FOG Ph1
 - \$40,000 for FOG Ph2A
 - \$330,000 for FOG Ph2B
 - Oregon DOE
 - ~\$1M Pass-through Tax Certificates

FOG System Development

- FOG Phase 1
 - FOG Tank 1
 - 12,000 gallon feed tank
 - FOG Offload/Recirculation Pump 1
 - 350 gpm Rotary Lobe pump
 - FOG Feed Pump
 - 50 gpm Rotary Lobe pump
 - Plant and Cutter Grinder/Rock Trap
 - FOG Heat Exchanger
 - 1.2M BTU
 - Odor Control Unit
 - Carbon media canister
 - Road Improvements for Hauler Access
 - EI&C Systems
 - Total Cost \$897,440 in 2011 Dollars
 - Design/SDCs \$136,800
 - Construction \$760,640

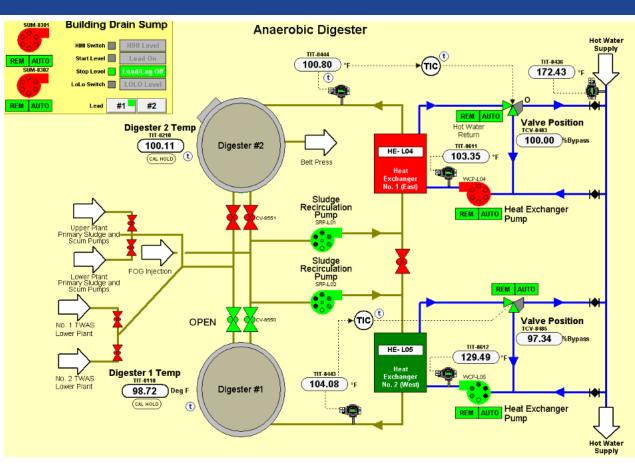
CITY OF GRESHAM

FOG System Development


- FOG Phase 2A
 - FOG Tank 2
 - 18,000 gallon offload/transfer tank
 - FOG Recirculation Pump 2
 - 350 gpm Rotary Lobe
 - 2nd Odor Control Unit
 - Carbon media canister
 - Road Improvements for Hauler Access
 - Road widening
 - EI&C Systems
 - Total Cost \$610,727 in 2014 Dollars
 - Design covered in Ph1
 - Construction \$610,727

Biogas/Cogen System Expansion

- FOG Phase 2B
 - Co-generator 2
 - 395KW CAT 3508 CHP Engine
 - Pre-purchased unit to ensure same model as Co-gen 1
 - Air-Fuel Ratio Controller (AFRC)
 - Boiler Improvements
 - Fuel Treatment Improvements
 - EI&C Systems
 - Co-gen controls
 - Switchgear addition
 - PGE Net-metering
 - Total Cost \$2.53M in 2015 Dollars
 - Design/SDCs \$342,746
 - Equipment Procurement \$835,677
 - Construction \$1,352,271

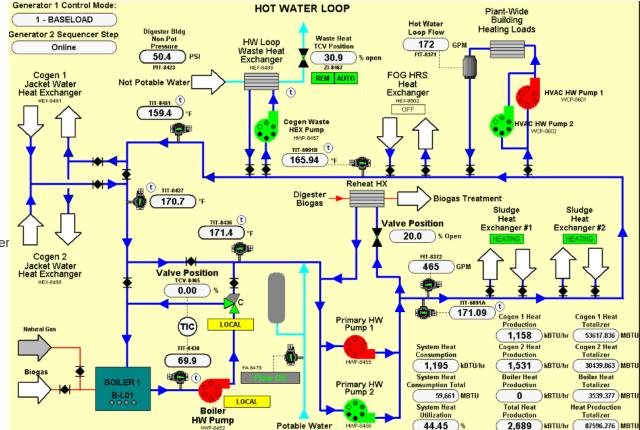


Gresham's Digestion Process

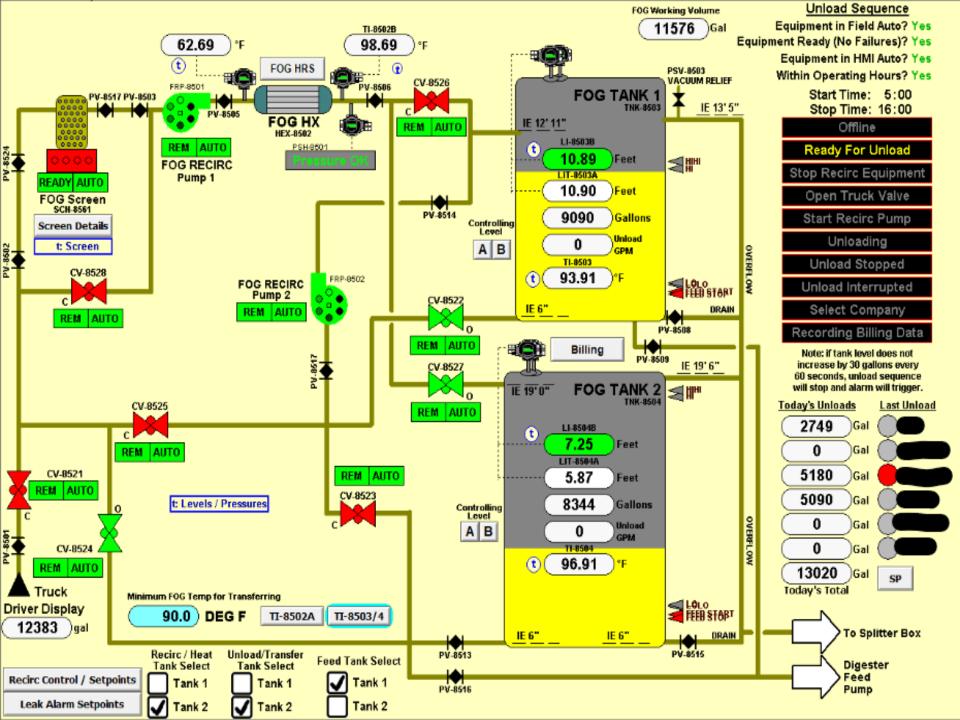
Gresham's Digesters

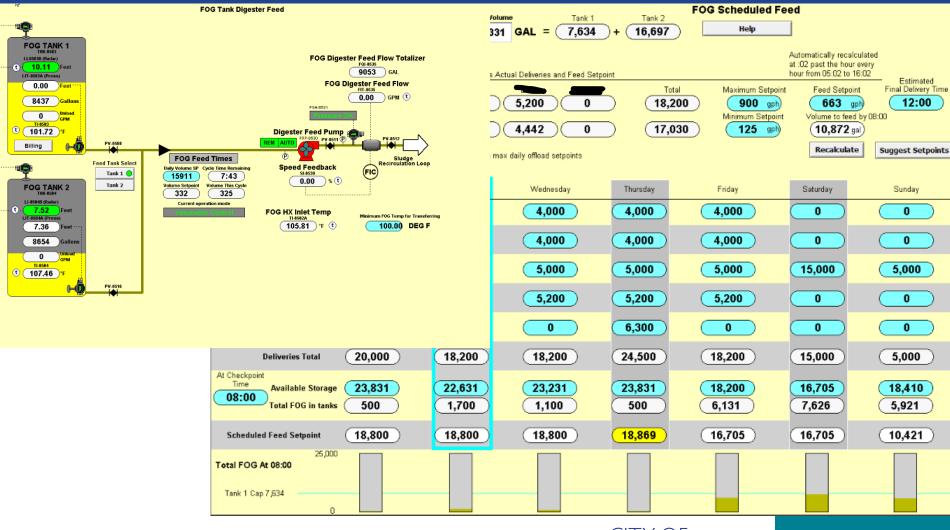
Two Anaerobic Digesters

- Mesophilic
 - Typically run between 96–100°F
- Ran in series
 - Primary (Digester 1) and
 - Secondary (Digester 2)
- Feed ratios
 - 30% Primary Sludge
 - 55% Waste Activated Sludge (WAS)
 - 15% FOG
- Solids Treatment
 - Provide 25 days Solids Retention Time
 - Produces 2,500 3,000 dry tons of Class B Biosolids per year
- Biogas Production
 - Produces 109,500,000 SCF Biogas per year

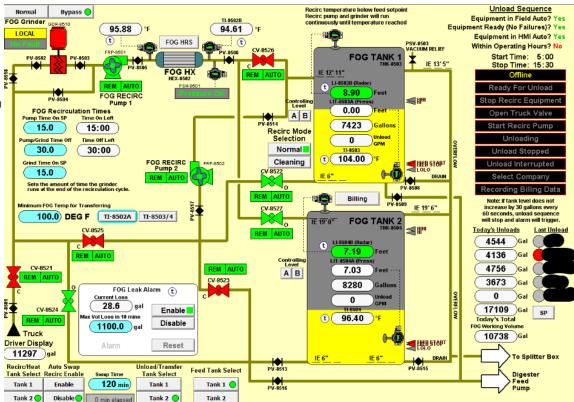


Gresham's Cogeneration Process


Gresham's Co-gens


Two 395kW CAT Engines

- Combined Heat & Power (CHP)
 - Produces 395kW per unit
 - Produces 25 MBTU heat per day per unit
- Heat Utilization
 - The co-gens transfer 16 MBTU heat per day per unit to the Hot Water Loop
 - Several projects to utilize heat around the WWTP
 - Heating digesters
 - Heating buildings
 - Heating FOG



Hauler Contracting

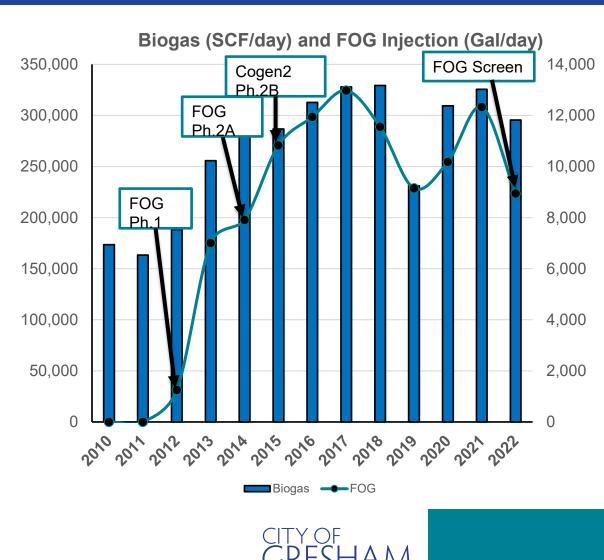
- Request for Proposals
 - FOG Haulers provided proposed tipping fee with minimum set at \$0.05/gal
 - 3 Haulers selected at \$0.08/gal
 - Primary & Secondary @ 2,000 6.000 gpd
 - Tertiary On-call
 - Increased contracted haulers to 5 in 2015
 - Began Accepting additional volume with increased capacity (30,000 gallons)
 - Reached 11,000 gpd average in 2015
 - Increased tipping fee in 2021
 - Increased tipping fee to \$0.09/gal in 2021
 - Collected \$3.1M in tipping fees through March 2023

Beneficial Outcomes

Increases in Biogas Production and Utilization

- Baseline at 180,000 SCFD
- Increased to >250,000 SCFD with FOG Program in full effect
- Reached Electrical Net-Zero in 2015
- Maintained net-zero through 2018
 - Digester Cleaning, Biogas Treatment Improvements, and Cogen Overhauls in 2019-20

Biogas (SCF/day) and FOG Injection (Gal/day) 350,000 14,000 Cogen2 Ph.2B FOG 300,000 12,000 Ph.2A 250,000 10,000 FOG 200,000 8,000 Ph.1 150,000 6.000 100,000 4,000 50,000 2,000 0 Ω 2010 2011 2012 2013 2014 2016 1015 2018 2019 2020 2021 202 ----FOG Biogas


CITY OF GRESHAM

Current Status

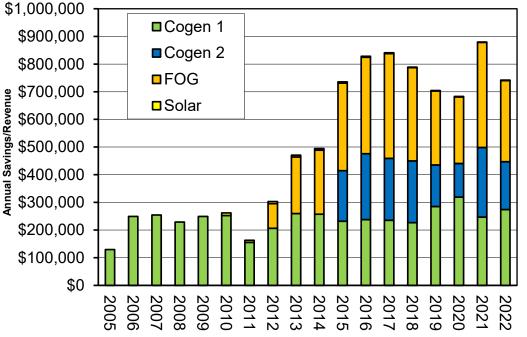
 Trending to Baseline Average of 12,000 gpd

• Produce >300,000 SCFD Biogas

• Produce >16,000 kWh/day average

Energy Management Program

Pros: FOG Injection for Biogas


Increase

- Avoided Utility costs average >\$450,000/year since 2015
- Tipping Fees average \$26,500/month since 2015

Trade-offs

- Large Capital Expenditures
 - Several Improvement Projects
 - Biogas Treatment Improvements (2019)
 - Solids Improvements (2019)
 - Level and Pressure Indicators added
 - Second, larger Waste Gas Flare
 - Digester Cleaning
 - FOG Injection improvements
 - FOG Screening Improvements (2022)

18-Year Avoided Utility Costs and FOG Tipping Fee Income

FOG System

History

- Maintenance Struggles
 - Low pH and abrasives issues for piping, pumps, and instrumentation
 - Cleaning 1 Tank/month with assistance from Collections
 - Takes several hours and 2-3 Vactor loads
 - Large amounts of trash, debris, and grit
 - ~\$500K in equipment repairs, not including tank cleanings

FOG Screenings Improvements CIP

Project Aims

Better Screening of FOG

- Reduce tank cleaning efforts
 - Duration
 - Frequency?
- Protect Equipment
 - Low pH, abrasives, trash and debris destroys equipment
 - New Rock Trap and StrainPress with 5mm screen to remove majority of trash & debris
- Better Monitoring of Tank Levels
 - Replaced unreliable pressure transmitters with secondary radars
- Stainless Steel Rotary Lobe Pumps
 - Rubber lobes replaced frequently

CITY OF GRESHAM

FOG Screenings Improvements CIP

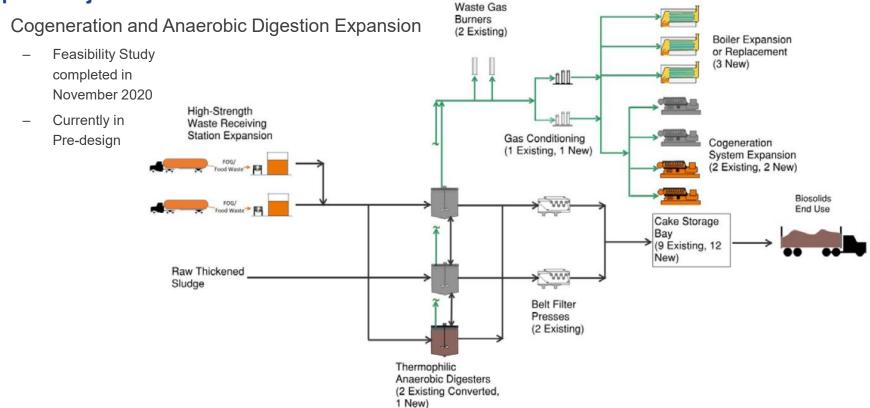
Current Status

Screening

- Huber SP 430
 - 5mm Drum Screen
 - Convey screenings with auger
 - Pressure zone with cone to dewater and squeeze screenings into dumpster.

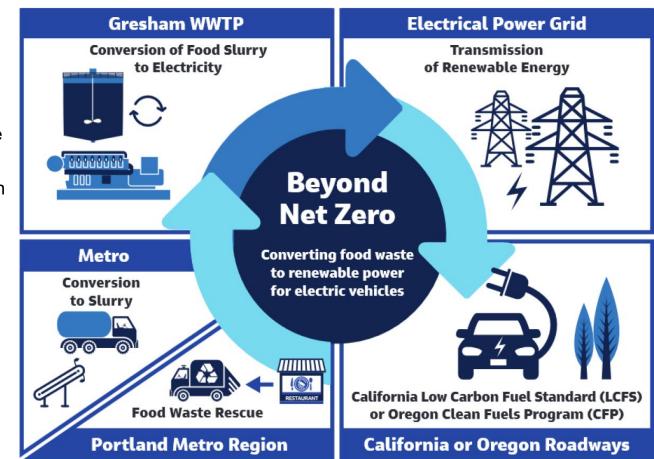
95% Complete

- FOG Improvements
 - FOG Receiving online
 - System tuning ongoing



FOG Screenings Improvements CIP

Future of Energy Management at Gresham WWTP


Capital Projects

Conclusions

- FOG is a resource that can be leveraged for sustainability
- Sustainability pathways can be long and step-wise, but with consistent effort and dedication will pay dividends

Questions?

